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Abstract. There are several matrices that can be associated to a graph. Spectral graph theory is the

study of the spectrum, or set of eigenvalues, of these matrices and its relation to properties of the graph. We
introduce the primary matrices associated with graphs, and discuss some interesting questions that spectral

graph theory can answer. We also discuss a few applications.

1. Introduction and Definitions

This work is primarily based on [1]. We expect the reader is familiar with some basic graph theory and
linear algebra. We begin with some preliminary definitions.

Definition 1. Let Γ be a graph without multiple edges. The adjacency matrix of Γ is the matrix A indexed
by V (Γ), where Axy = 1 when there is an edge from x to y, and Axy = 0 otherwise. This can be generalized
to multigraphs, where Axy becomes the number of edges from x to y.

Definition 2. Let Γ be an undirected graph without loops. The incidence matrix of Γ is the matrix M ,
with rows indexed by vertices and columns indexed by edges, where Mxe = 1 whenever vertex x is an endpoint
of edge e. For a directed graph without loss, the directed incidence matrix N is defined by Nxe = −1, 1, 0
corresponding to when x is the head of e, tail of e, or not on e.

Definition 3. Let Γ be an undirected graph without loops. The Laplace matrix of Γ is the matrix L indexed
by V (G) with zero row sums, where Lxy = −Axy for x 6= y. If D is the diagonal matrix indexed by V (Γ)
such that Dxx is the degree of x, then L = D − A. The matrix Q = D + A is called the signless Laplace
matrix of Γ.

Both Q and L are positive semidefinite, since Q = MMT and L = NNT , where a directed incidence
matrix N is obtained from an arbitrary orientation of Γ.

Definition 4. The (ordinary) spectrum of a finite graph Γ is the spectrum of the adjacency matrix A
with multiplicities. The Laplace spectrum of a finite undirected graph without loops is the spectrum of the
Laplace matrix L with multiplicities.

Note that the spectrum and Laplace spectrum of a graph Γ do not depend on the numbering the vertices
chosen, as relabeling the vertices corresponds to permuting the rows and columns of A and L.

Example 1. Consider the graph P3, the path on three vertices.

v1

v2

v3

e1 e2

Labeling the graph as above, we obtain the matrices

A =

0 1 0
1 0 1
0 1 0

 ,M =

1 0
1 1
0 1

 , and L =

 1 −1 0
−1 2 −1

0 −1 1

 .
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The ordinary spectrum is {
√

2, 0,−
√

2}, and the Laplace spectrum is {0, 1, 3}.

We can deduce several preliminary properties about these matrices through linear algebra. First, when
Γ is an undirected, simple graph with n vertices, both A and L are real, symmetric matrices. Thus, each
matrix has all real eigenvalues, and for each eigenvalue, the algebraic and geometric multiplicities coincide.
That is, they each have a set of orthogonal eigenvectors which are a basis for Rn.

For general graphs Γ, notice that A has a zero diagonal. Its trace, and therefore sum of eigenvalues, is
thus 0. We noted previously that L is positive semidefinite since L = NNT . Being positive semidefinite is
equivalent to having non-negative eigenvalues. The Laplace matrix is also singular, since L1 = 0 where 1 is
the vector of all ones. Hence, the eigenvalues of L can be denoted 0 = µ1 ≤ µ2 ≤ ... ≤ µn. Its trace (and
therefore sum of eigenvalues) is ∑

v∈V
deg(v) = 2|E|.

The signless Laplace matrix Q = MMT also has a real spectrum and nonnegative eigenvalues, but is not
necessarily singular. Finally, notice that Tr(Q) = Tr(L).

2. Spectra and Combinatorial Properties of Graphs

These matrices record a significant amount of combinatorial information of a graph. As one example, we
can use the adjacency matrix to count walks.

Proposition 1. Let Γ be a simple, undirected graph, and let h be a non-negative integer. Then (Ah)ij is
the number of walks of length h from vertex vi to vj.

Proof. We induct on h. Let Γ be a graph with n vertices, fix a labeling for its vertices {vi}ni=1, and let A be
its adjacency matrix. For h = 1, Aij represents the number of edges from vi to vj , which are equivalent to
length 1 walks from vi to vj .

Now, suppose the statement holds for some h. Writing out the matrix multiplication for Ah+1 = Ah · A,
we see that

(Ah+1)ij =

n∑
k=1

(Ah)i,kAk,j .

By assumption, (Ah)i,k is the number of walks of length h from vi to vk, and Ak,j is the number of length 1
walks from vk to vj . Thus, their product is the number of walks of length h+ 1 from vi to vj such that the
second to last vertex is vk. Summing over all k accounts for all cases. �

Corollary 1. If Γ is a simple, undirected graph, (A2)ii is the degree of the vertex x, and TrA2 equals the
number of edges of Γ. Similarly, TrA3 is six times the number of triangles in Γ.

Proof. A2
ii counts the number of closed walks of length 2 from vi to itself. All such walks must be of the form

vi → vj → vi for some vj adjacent to vi. Thus there is one such walk for each edge adjacent to v. Now A3
ii

counts the number of closed walks of length 3 from vi to itself. These must be of the form vi → vj → vk → vj ,
and thus forms a triangle. TrA3 then counts each triangle six times when accounting for the base point and
the direction of the path. �

Remark 1. The above statement and proof that (Ah)ij counts walks of length h generalizes to multigraphs
and directed graphs, though the corollary involving A2 and A3 do not.

Another powerful combinatorial result is known as Kirchhoff’s Matrix Tree Theorem. We omit the full
proof, but give two outlines.

Theorem 1 (Kirchhoff). Let Γ be an undirected (multi)graph with at least one vertex and Laplace matrix
L with eigenvalues 0 = µ1 ≤ µ2 ≤ . . . ≤ µn. Let `xy be the (x, y) cofactor of L. Let τ(Γ) be the number of
spanning trees of Γ. Then,

τ(Γ) = `xy = det(L+
1

n2
J) =

1

n
µ2...µn.
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For an edge e which is not a loop in Γ, we can consider the graphs Γ \ e and Γ/e, the deletion and
contraction of the edge e, respectively. It is quick to show that τ(Γ) = τ(Γ \ e) + τ(Γ/e). Then, one can
induct on on the number of edges.

This result also follows easily using the Cauchy-Binet theorem.

3. Spectra, Connectedness, and Bipartite Graphs

We next turn to a handful of results relating the spectra of a graph, connectedness, and bipartite-ness.
This is possible largely because the spectra of a graph respects the structure of its connected components.

Lemma 1. Let Γ be a graph with connected components Γi. Then the spectrum of Γ is the union of the
spectra for Γi. The same holds for the Laplace and signless Laplace spectra.

Proof. First, consider a graph Γ with k connected components. We show the result for A, and the proof
follows similarly for L and Q.

We can label the vertices of Γ so that A is block diagonal:

A =


A1 0 ... 0
0 A2 ... 0
...

...
. . .

...
0 0 ... Ak

 ,
where Ai is the adjacency matrix of the i-th connected component. Let n = |V (Γ)| and ni = |V (Γi)|. So we

see that det(A− λIn) = 0 if and only if
∏k
i=1 det(Ai − λIni

) = 0. �

Unfortunately, the ordinary spectrum cannot determine if a graph is connected.

Example 2. Both K1 t C4 and K1,4 have spectrum {−2, 0, 0, 0, 2}.

A =


0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 0
0 0 0 0 0

 A =


0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0


On the other hand, the Laplace spectrum is able to detect connectedness. Moreover, it encodes exactly

how many connected components a graph has.

Proposition 2. The multiplicity of 0 as an eigenvalue of the Laplace matrix of an undirected graph Γ equals
the number of connected components of Γ.

Proof. Suppose Γ is connected. Recall that L = NNT , where N is the incidence matrix of an arbitrary
orientation of Γ. Then, Lu = 0 implies 0 = uTNNTu = ‖NTu‖2. Hence NTu = 0. By definition, row k of
NT has a single entry NT

k,i = 1 and NT
k,j = −1, with all other components 0.
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NTu =



N1,1 ... N1,i ... N1,j ... N1,n

...
. . .

...
. . .

...
. . .

...
0 ... 1 ... −1 ... 0
...

. . .
...

. . .
...

. . .
...

Nn,1 ... Nn,i ... Nn,j ... Nn,n





u1

...
ui
...
uj
...
un


Thus if there is an edge ij ∈ E, then ui = uj . Since Γ is connected, there is an ij path for each i, j ∈ V .

Repeating this argument for the path shows that ui = uj for all i and j. Thus eigenvectors for 0 must be
multiples of 1. For general graphs Γ, each connected component then contributes the 0 eigenvalue exactly
once by Lemma 1. �

We can also recover information about whether a graph is bipartite.

Proposition 3. The multiplicity of 0 as an eigenvalue of the signless Laplace matrix equals the number of
bipartite connected components of Γ.

Proof. This is done similarly as above. We first assume Γ is connected. Qu = MMTu = 0 implies MTu = 0.
Row k of MT has a 1 in two entries MT

k,i and MT
k,j , and 0 elsewhere. For the product to be 0, it must

be that ui = −uj . Since Γ is connected, this places a condition on all entries of u, which may or may not
force all entries to be 0. A nonzero vector u corresponds to an assignment of positive and negative signs to
vertices such that adjacent vertices are not assigned the same sign. A nontrivial assignment exists if and
only if Γ is bipartite, so that the eigenspace of 0 has dimension 1 if and only if Γ is bipartite. Note that
for connected graphs, bipartite partitions are unique, so the eigenspace cannot have dimension more than 1.
Now for general graphs, we again apply Lemma 1. �

Proposition 4. A graph is bipartitite if and only if the Laplace spectrum and the signless Laplace spectrum
are equal.

Proof. If the spectra are equal, then by the previous two propositions, the number of connected components
and bipartite connected components is the same. If Γ is bipartite, then then L and Q are similar by a
diagonal matrix D with diagonal entries ±1, i.e. Q = DLD−1. Matrix D is diagonal where the diagonal
entries corresponding to one partition are all +1 and and the ones corresponding to the other partition are
all -1. Then, we have Qij = diid

−1
jj Lij = diidjjLij . So, for i = j, we have Qij = Lij and for i 6= j where

e = (i, j) is an edge, Qij = −Lij holds. �

4. Families of Graphs

We next consider the spectra of some common families of graphs.

4.1. The Complete Graph Kn. The adjacency matrix of Kn is J−I, where J is the n×n all-ones matrix.
There is a one dimensional eigenspace for Jv = λv with v = 1 and λ = n. Any vector v such that 1T v = 0
will be an eigenvector with eigenvalue λ = 0. This is a n−1 dimensional hyperplane, hence 0 is an eigenvalue
with multiplicity n − 1. Translating, we see that A = J − I then has spectra (n − 1)1 and (−1)n−1. To
consider the Laplacian spectrum, we again translate. We see then that L = D − A = nI − J has 0 as an
eigenvalue with multiplicity 1 and eigenvector v = 1, and λ = n is an eigenvalue with multiplicity n− 1 and
eigenspace 1⊥ = {v :1T v = 0}.
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4.2. The n-cycle Cn. We first consider the spectrum of any circulant matrix, as derived in [2]. Since both
A and D −A are circulant matrices, the spectra of Cn, both directed and undirected, follow.

Definition 5. A matrix C is circulant if each row is a cyclic shift by one index of the row above it. That
is, it has the form 

c0 c1 . . . cn−1

cn−1 c0 . . . cn−2

...
. . .

. . .
...

c1 . . . cn−1 c0

 .
If one denotes the first row of C as the vector c, then a circulant matrix can be characterized by the

property Ck,j = c(j−k) mod n. Thus, if we seek solutions to Cv = λv, we are looking to solve the system of
equations

n−1∑
k=n−m

ckvk−(n−m) +

n−1−m∑
k=0

ckvk+m = λvm

for m = 0, 1, . . . , n− 1, taking the convention ck = 0 if k ≥ n and vk = 0 if k ≤ 0.
For each m, this yields a linear difference equation for vm. Much like for linear differential equations, their

continuous counterpart, a standard solution technique for linear difference equations is to make an educated
guess and then show that the guess was correct. In the case of constant coefficients, the correct guess is
vm = rm. Making this substitution and factoring out rm, we have

n−1∑
k=n−m

ckr
k−(n−m) +

n−1−m∑
k=0

ckr
k+m = λrm

r−n
n−1∑

k=n−m

ckr
k +

n−1−m∑
k=0

ckr
k = λ

If we choose r such that rn = 1, this reduces to

n−1∑
k=0

ckr
k = λ.

So for each n-th root of unity ζm, we have an eigenvalue λm =
∑n−1
k=0 ckζ

k
m with associated eigenvector

v = (1, ζm, ζ
2
m, . . . , ζ

n−1
m ).

If we label the vertices of Cn by 0, . . . , n−1, then the adajency matrix of the undirected cycle is determined
by the vector c, where

ci =

{
1 i = 1, or n− 1

0 otherwise.

Thus the eigenvalues of A are

λm = e2πim/n + (e2πim/n)n−1

= 2 cos

(
2πm

n

)
,

for m = 0, . . . , n− 1. Likewise, the eigenvalues of L = D − A are 2− 2 cos
(

2πm
n

)
for m = 0, . . . , n− 1. For

the undirected cycle, we see that the ordinary spectrum is the set of n-th roots of unity.

5. Eigenvalues and Eigenvectors

Definition 6. The largest eigenvalue of a graph is known as its spectral radius or index.

In order to state some further results, we first develop some linear algebra.
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Definition 7. Let T be a real n× n matrix with nonnegative entries. T is called primitive if for some k,
we have T k > 0; T is called irreducible if for all i, j, there is a k such that (T k)ij > 0. (Here, A > 0 and
A ≥ 0 respectively mean all entries are positive or nonnegative).

Recall that a directed graph is called strongly connected if there is a directed path from i to j for all
vertices i and j. Let ΓT be the directed graph with vertices {1, ..., n}, where ij is an edge whenever Tij > 0.
Note that a matrix T is irreducible if and only if the directed graph ΓT is strongly connected. This is because
(Ak)xy is the number of paths of length k from x to y.

Theorem 2. (Perron-Frobenius)
Let T ≥ 0 be irreducible. There is a unique positive real number θ0 with the following properties:

(1) There is a real vector x0 > 0 with Tx0 = θ0x0.
(2) θ0 has geometric and algebraic multiplicity one.
(3) For each eigenvalue θ of T , we have |θ| ≤ θ0. If T is primitive, then |θ| = θ0, implies θ = θ0. In

general, if T has period d, then T has precisely d eigenvalues θ with |θ| = θ0, namely θ = θ0e
2πij/d

for j = 0, 1, ..., d− 1.
(4) Any nonnegative left or right eigenvector of T has eigenvalue θ0. More generally, if x ≥ 0, x 6= 0,

and Tx ≤ θx, then x > 0 and θ ≥ θ0; moreover, θ = θ0 if and only if Tx = θx.
(5) If 0 ≤ S ≤ T or if S is a principal minor of T , and S has eigenvalue σ, then |σ| ≤ θ0; if |σ| = θ0,

then S = T .
(6) Given a complex matrix, let |S| denote the matrix with elements |S|ij = |Sij |. If |S| ≤ T and S has

eigenvalue σ, then |σ| ≤ θ0. If equality holds, then |S| = T , and there is a diagonal matrix E with
diagonal entires of absolute value 1 and a constant c of absolute value 1 such that S = cETE−1.

Using Perron-Frobenius, we can deduce some results for the spectral radius.

Proposition 5. Each graph Γ has a real eigenvalue θ0 with nonnegative real corresponding eigenvector such
that for each eigenvalue θ, we have |θ| ≤ θ0. The value of θ0(Γ) does not increase when vertices or edges are
removed from Γ.

If Γ is strongly connected, then

(1) θ0 has multiplicity 1.
(2) If Γ is primitive (strongly connected, and such that not all cycles have a length that is a multiple of

some integer d > 1), then |θ| < θ0 for all eigenvalues θ different from θ0.
(3) The value of θ0(Γ) decreases when vertices or edges are removed from Γ.

Proposition 6. Let Γ be a connected, undirected graph with largest eigenvalue θ1. If Γ is regular of valency
(degree) k, then θ1 = k. Otherwise, we have kmin < k < θ1 < kmax, where kmin, kmax, and k are the
minimum, maximum, and average degree.

Proof. Let 1 be the vector of all 1’s. Then A1 ≤ kmax1, and by Perron-Frobenius, we have θ1 ≤ kmax with
equality if and only if A1 = θ11, that is, if and only if Γ is regular of degree θ1. �

6. The Independence Number

One application of these ideas is to the independence number of a graph. Recall that

Definition 8. A coclique or independent set is a set of pairwise disjoint vertices in a graph Γ. The
independence number α(Γ) is the maximal size of a coclique in Γ.

The eigenvalues associated to a matrix provide bounds on the independence number of a graph. We first
develop some more linear algebra, starting with the Rayleigh quotient.

Definition 9. Let A be a real symmetric matrix and u be a nonzero vector. The Rayleigh quotient is
defined by

uTAu

uTu
.
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Proposition 7. Let θ1 ≥ . . . ≥ θn be the eigenvalues of A, a real symmetric matrix, and let u1, . . . , un be
an associated set of orthonormal eigenvectors. Then,

uTAu

uTu
≥ θi if u ∈ 〈u1, . . . , ui〉, and

uTAu

uTu
≤ θi if u ∈ 〈ui, . . . , un〉.

Proof. Let u =
∑
aiui be the expansion of u in terms of this orthonormal basis. Then, uTu =

∑
a2
i and

uTAu =
∑
a2
i θi. Hence, if u ∈ 〈u1, . . . , ui〉, then

uTAu

uTu
=

∑i
j=1 a

2
jθj∑i

j=1 a
2
j

≥ θi

∑i
j=1 a

2
j∑i

j=1 a
2
j

= θi.

Likewise, if u ∈ 〈ui, . . . , un〉, then

uTAu

uTu
=

∑n
j=i a

2
jθj∑n

j=i a
2
j

≤ θi

∑n
j=i a

2
j∑n

j=i a
2
j

= θi.

�

We will also need the following definition in our discussion of the independence number.

Definition 10. Given two sequences of real numbers θ1 ≥ . . . ≥ θn and η1 ≥ . . . ≥ ηm, the second sequence
is said to interlace the first if

θi ≥ ηi ≥ θn−m+i for i = 1, . . . ,m.

If m = n− 1, this yields θ1 ≥ η1 ≥ θ2 ≥ . . ., hence the name.

Lemma 2. If B is a principal submatrix of A, then the eigenvalues of B interlace the eigenvalues of A.

Proof. If B is a principal submatrix, then B = [Im0n−m]A[Im0n−m]T . Let η1 ≥ . . . ≥ ηm be the eigenvalues
of B, and vi their associated eigenvectors, and let θ1 ≥ . . . ≥ θm be the eigenvalues of A, and ui an associated
orthonormal basis of eigenvectors. For each i, take a nonzero vector

si ∈ 〈v1, . . . , vi〉 ∩ 〈[Im0n−m]u1, . . . , [Im0n−m]ui−1〉⊥.

Since [Im0n−m][Im0n−m]T = Im, we have that

[Im0n−m]T si ∈ 〈u1, . . . , ui−1〉⊥.

Hence,

θi ≥
([Im0n−m]si)

TA[Im0n−m]T si
([Im0n−m]si)T [Im0n−m]T si

=
sTi Bsi
sTi si

≥ ηi.

The same argument shows the other inequality.
�

With this background in place, we quickly obtain bounds on the independence number of a graph Γ.

Theorem 3. α(Γ) ≤ |{i : θi ≥ 0}| and α(Γ) ≥ |{i : θi ≤ 0}|.
7



Proof. An independent set of size m corresponds to an all 0’s principal submatrix of the adjacency matrix
A of size m. So, by Lemma 2, θα(Γ) ≥ ηα(Γ) = 0 and θn−α(Γ)−1 ≤ ηn−α(Γ)−1 = 0

�

7. The Chromatic Number

As another application of the eigenvalue bound ideas, we consider graph colorings. An upper bound can
be derived by fairly elementary means. We also present a lower bound. Its proof requires more tools, so we
omit it.

Definition 11. A proper vertex coloring of a graph is an assignment of colors to the vertices so that
adjacent vertices get different colors. The chromatic number χ(Γ) is the minimum number of colors of a
proper vertex coloring of Γ.

Proposition 8. Let Γ be connected with largest eigenvalue θ1. Then χ(Γ) ≤ 1 + θ1 with equality if and only
if Γ is complete or is an odd cycle.

Proof. Let m = χ(Γ), and without loss of generality, we can assume m > 1. We claim there exists a
submatrix ∆ where vertices have minimum degree m− 1. Let ∆ be a subgraph such that χ(∆) = χ(G) and
∆ has the minimum number of vertices, i.e. removing any vertex v from ∆ reduces the chromatic number.
Assume some v ∈ ∆ has degree less than m− 1. Remove v, and color ∆ \ {v} using m− 1 colors. Since v is
adjacent to at most m− 2 vertices, we can insert v and color it with one of the m− 1 colors not used on its
neighbors. This gives us a coloring of ∆ with m− 1 colors, a contradiction. Thus, it must be the minimum
degree of ∆ is m− 1. Now

θ1(Γ) ≥ θ1(∆) ≥ dmin(∆) ≥ m− 1 = χ(Γ)− 1.

By Perron-Frobenius, equality holds in the cases Γ = ∆, and ∆ must be regular of degree m − 1. Brook’s
Theorem states a connected graph in which every vertex has at most k neighbors can be colored with only
k colors, except for the two cases of complete graphs and cycle graphs of odd length, which require k + 1
colors. �

Theorem 4. If Γ is not edgeless, then χ(Γ) ≥ 1− θ1
θn

.

Remark 2. The complete multipartite graph Km×a has chromatic number m and achieves this bound.

8. Application: Spectral Graph Sparsification

Given a graph G = (V,E), we aim to “approximate” G by a sparse graph H = (V,E′). That is, we would
like to find a subset E′ ⊆ E such that |E′| is as small as possible, say O(n) or O(nlog(n)) where n = |V |,
and H is a “good” approximation for G. For two matrices A and B, we denote A � B or B � A if A−B is
a positive semidefinite matrix. We consider the following notion of spectral graph approximation.

Definition 12. Consider graphs G and H. H ε-spectrally approximates G for some ε > 0 if

(1− ε)LG � LH � (1 + ε)LG,

where LG and LH are the Laplace matrix of graphs G and H respectively.

Using the Courant-Fischer theorem, an immediate consequence of the above definition is that all eigen-
values of LH approximate eigenvalues of LG up to multiplicative 1± ε error.

Remark 3. Spectral sparsification is stronger than cut sparsification. To see this, consider any subset S ⊆ V
of the vertices and the corresponding characteristic vector ν = 1S. Then, we have:

νTLGν = ωG(E(S, S̄)),

νTLHν = ωH(E(S, S̄)),

where ωG(E(S, S̄)) and ωH(E(S, S̄)) denote the cumulative weight of the edges in G and H respectively that
cross the cut (S, S̄) (i.e., the set of edges with one endpoint in S and the other endpoint in S̄). Therefore, if
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H is an ε-spectral approximation of G, the weight of every cut in H should be within 1 ± ε of the weight of
the corresponding cut in G.

Theorem 5. [3] For every ε > 0, the following holds:
For every unweighted, connected graph G = (V,E), there exists a weighted graph H = (V,E′) such that

E′ ⊆ E, |E′| ≤ O(nlog(n)
ε2 ) and H ε-spectrally approximates G.

Proof. First, to see why the approximation graph H needs to be weighted, consider the case where G is a
complete graph. Since the weight of every cut in H should be close to that of the corresponding cut in G
and considering that |E(S, S̄)|=|S||S̄|, we need to put large weights on the edges of the sparse graph H.
Let p be a probability distribution on the edges of the graph G, i.e., we have some probabilities pe ≥ 0 such
that

∑
e∈E pe = 1. The random sampling algorithm is provided in Algorithm 1.

Algorithm 1 Graph Sparsification Algorithm

Input: Graph G = (V,E), probabilities pe over the edges e ∈ E, k: number of edges of the sparse graph
(i.e., |E′| = k where H = (V,E′) is the ε-spectral approximation of G).
Output: ε-spectral approximation H = (V,E′) of G = (V,E) where E′ ⊆ E.
Initialize edge weights ωe := 0 for every e ∈ E.
for i = 1 to k do

Sample an edge e ∈ E i.i.d. according to probabilities {pe}e∈E .
Update ωe = ωe + 1

kpe
.

end for

If we denote the edge sampled at round i ∈ [k] by e(i), then we have LH =
∑k
i=1Xi where Xi = 1

kp
e(i)

Le(i) .

Therefore, we can write:

E[LH ] =

k∑
i=1

E[Xi] =

k∑
i=1

∑
e∈E

pe
1

kpe
Le =

1

k

k∑
i=1

∑
e∈E

Le︸ ︷︷ ︸
=LG

= LG.

So LH is an unbiased estimator of LG. However, in order for H to be an ε-spectral approximation of G with

a small value of k, we need the sum of i.i.d. random matrices LH =
∑k
i=1Xi to be concentrated around its

mean. We use the following concentration inequality for a sum of i.i.d. random matrices:
For any α ≥ 1, if Xi � αE[Xi] = α

kLG holds with probability one for all i ∈ [k], then for any ε ∈ (0, 1), we
have:

P
[
(1− ε)LG � LH =

k∑
i=1

Xi � (1 + ε)LG
]
≥ 1− 2nexp(−ε

2k

4α
).

Therefore, if we choose k = O( αε2 log(n)), the desired result holds with probability at least 1 − 1
n . So if we

choose the sampling probabilities pe such that Xi � αE[Xi] = α
kLG holds with probability one for all i ∈ [k]

and α ≤ O(n), the proof is complete. A natural choice for the sampling probabilities is uniform sampling
where pe = 1

|E| ∀e ∈ E. However, this approach fails in a general graph. For instance, Let G be the Barbell

graph, i.e., union of two Kn
2

connected by an edge e. Since the weight of the cut e in G and its corresponding
cut in H need to be approximately equal, we have to include the edge e in the sparse graph H and using
uniform random sampling, we need to sample Θ(n2) edges for edge e to be sampled with high probability.
Thus we need an alternative choice of sampling probabilities pe ∀e ∈ E.

Definition 13. For every edge e ∈ E, we define the effective resistance of the edge e as follows:

Re := Tr(LeL
†
G),

where L†G is the pseudo-inverse of LG. That is, if LG =
∑n
i=2 λiuiu

T
i is the eigenvalue decomposition of the

Laplace matrix LG, we have L†G =
∑n
i=2

1
λi
uiu

T
i .
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Figure 1. Barbell graph

Using the above definition, we have
∑
e∈E LeL

†
G = LGL

†
G = IIm(LG), where Im(LG) is the span of non-zero

eigenvectors of LG (i.e., the (n− 1)-dimensional vector space orthogonal to 1).

Remark 4. We can obtain the above formula using the definition of effective resistance in electrical networks
as well. To see that, we first remind the reader that LG = NNT , where N is the directed incidence matrix of
the graph. Effective resistance between two endpoints u,w of an edge e is defined as the potential difference
between them when a unit current is injected at one and extracted at the other. Using Kirchoff’s current
law, if we denote the current injected in vertices and the current in edges by iinj and if respectively, we have
Nif = iinj. We can use Ohm’s law to write if = NT v, where v denotes the potential induced at the vertices.
Combining these two equalities, we obtain:

iinj = NNT v = LGv.

If iinj is orthogonal to the kernel of the Laplace matrix LG (i.e., iinj ⊥ 1), we can write v = L†Giinj. To
obtain the effective resistance across the edge e = (u,w), let iinj = 1w − 1u. First, note that iinj ⊥ 1 holds.
Therefore, we have:

Re = v(w)− v(u) = (1w − 1u)T v = (1w − 1u)TL†G(1w − 1u) = Tr
(

(1w − 1u)(1w − 1u)T︸ ︷︷ ︸
=Le

L†G
)

= Tr(LeL
†
G).

We define our sampling probabilities to be proportional to the effective resistance of the edges. To be
precise, for edge e ∈ E, we set pe = Re

n−1 . To see why this is indeed a probability distribution over the edges,
we can write: ∑

e∈E
Re =

∑
e∈E

Tr(LeL
†
G) = Tr

(∑
e∈E

LeL
†
G

)
= Tr(LGL

†
G) = Tr(IIm(LG)) = n− 1.

Using the aforementioned sampling probabilities, for all i ∈ [k], we have:

Xi � αE[Xi] =
α

k
LG ⇐⇒

n− 1

kRe(i)
Le(i) �

α

k
LG ⇐⇒ Le(i) � α

Re(i)

n− 1
LG.

Therefore, if we set α = n−1, we need to verify Le � ReLG for all e ∈ E to complete the proof. Equivalently,
we have to show that νTLeν ≤ Reν

TLGν holds for every ν ∈ Rn. Considering that the vector of all ones
1 is in the kernel of both matrices Le and LG, it suffices to only consider ν such that ν ⊥ 1. Moreover,

denoting the square root of L†G =
∑n
i=2

1
λi
uiu

T
i with L

†/2
G =

∑n
i=2

1√
λi
uiu

T
i , since Im(L

†/2
G ) contains every

vector orthogonal to 1, it suffices to prove the inequality for ν = L
†/2
G ω for any ω ∈ Rn such that ω ⊥ 1. So

we need to show the following:

(L
†/2
G ω)TLe(L

†/2
G ω) ≤ Re(L†/2G ω)TLG(L

†/2
G ω) = ReωTL

†/2
G LGL

†/2
G ω = Reω

Tω.

The above inequality holds because:

ωTL
†/2
G LeL

†/2
G ω ≤ ‖L†/2G LeL

†/2
G ‖ω

Tω ≤ Tr(L
†/2
G LeL

†/2
G )ωTω = Tr(LeL

†
G)ωTω = Reω

Tω,

where the second inequality is due to positive semidefiniteness of L
†/2
G LeL

†/2
G . �
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